The Homogenized Energy Model (HEM) for Characterizing Polarization and Strains in Hysteretic Ferroelectric Materials: Implementation Algorithms and Data-Driven Parameter Estimation Techniques

نویسندگان

  • Zhengzheng Hu
  • Ralph C. Smith
  • Jon Ernstberger
چکیده

Ferroelectric materials, such as PZT, PLZT, PMN and BaTiO3, provide unique actuator and sensor capabilities for applications including nanopositioning, high speed valves and fuel injectors, camera focusing and shutter mechanisms, ultrasonic devices for biomedical imaging and treatment, and energy harvesting devices. However, to achieve the full potential of the materials, it is necessary to develop and employ models that quantify the creep, rate-dependent hysteresis, and constitutive nonlinearities that are intrinsic to the materials due to their domain structure. The success of models requires that they be highly efficient to implement since real-time applications can require kHz to MHz rates. The calibration of models for specific materials, devices, and applications, requires efficient and robust parameter estimation algorithms. Finally, control designs can be facilitated by models that admit efficient and robust approximate inversion. The homogenized energy model (HEM) is a multiscale, micromechanical framework that quantifies a range of hysteretic phenomena intrinsic to ferroelectric, ferromagnetic and ferroelastic materials. In this paper, we present highly efficient implementation and parameter estimation algorithms for the ferroelectric model. This includes techniques to construct analytic Jacobians and data-driven algorithms to determine initial parameter estimates to facilitate subsequent optimization. The efficiency of these algorithms facilitates material and device characterization and provides the basis for constructing efficient and robust inverse algorithms for model-based control design. The model implementation, calibration, and validation are illustrated using rate-dependent PZT data and single crystal BaTiO3 data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Homogenized Energy Model (HEM) for Characterizing Polarization and Strains in Hysteretic Ferroelectric Materials: Material Properties and Uniaxial Model Development

Ferroelectric materials, such as PZT, PLZT and BaTiO3, are being considered, or are already being employed, for a large number of applications including nanopositioning, high speed valves for fuel injectors, ultrasonic transducers, high speed camera shutters and auto focusing mechanisms, energy harvesting, and pico air vehicle design. Their advantages include nanometer positioning resolution, b...

متن کامل

A Temperature-Dependent Hysteresis Model for Relaxor Ferroelectric Compounds

This paper summarizes the development of a homogenized free energy model which characterizes the temperature-dependent hysteresis and constitutive nonlinearities inherent to relaxor ferroelectric materials. A kernel for the model is developed through mesoscopic energy analysis and extended to provide macroscopic constitutive relations through stochastic homogenization techniques based on the as...

متن کامل

High-Speed Parameter Estimation Algorithms For Nonlinear Smart Materials

A fundamental step in the model construction for ferroelectric, ferromagnetic, and ferroelastic materials is the estimation or identification of material parameters given measurements of the material response. Moreover, actuator and/or material properties may be a function of operating conditions which can necessitate the re-estimation of parameters if conditions change significantly. In this p...

متن کامل

Efficient Implementation Algorithms for Homogenized Energy Models

The homogenized energy framework quantifying ferroelectric and ferromagnetic hysteresis is increasingly used for comprehensive material characterization and model-based control design. For operating regimes in which thermal relaxation mechanisms and stress-dependencies are negligible, existing algorithms are sufficiently efficient to permit device optimization and the potential for real-time co...

متن کامل

Sliding Mode Control Design for Hysteretic Ferroelectric Materials

Ferroelectric materials are attractive for use in a wide range of applications due to their unique transduction capabilities. However, taking full advantage of these capabilities requires a control design which accounts for the materials’ inherent hysteretic behavior. A common approach is to partially cancel the hysteretic effects in the system by employing an approximate inversion algorithm in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011